ACADEMIC REGULATIONS & COURSE STRUCTURE

For COMPUTER SCIENCE & ENGINEERING

(Applicable for batches admitted from 2016-2017)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA
KAKINADA - 533 003, Andhra Pradesh, India
I Semester

<table>
<thead>
<tr>
<th>S.No.</th>
<th>SUBJECT</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ADVANCED DATA STRUCTURES AND ALGORITHM ANALYSIS</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>COMPUTER ORGANIZATION AND ARCHITECTURE</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>DATABASE MANAGEMENT SYSTEMS</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>ADVANCED OPERATING SYSTEMS</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>DATA WAREHOUSING AND DATA MINING</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>CSE LAB 1</td>
<td>--</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credits 20

II Semester

<table>
<thead>
<tr>
<th>S.No.</th>
<th>SUBJECT</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CYBER SECURITY</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>COMPUTER NETWORKS</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>BIG DATA ANALYTICS</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ADVANCED UNIX PROGRAMMING</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Elective – I</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1. SOFTWARE ENGINEERING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. ARTIFICIAL INTELLIGENCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. COMPILER DESIGN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. MACHINE LEARNING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Elective – 2</td>
<td>4</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1. IMAGE PROCESSING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. PARALLEL ALGORITHMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. CLOUD COMPUTING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. MOBILE COMPUTING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CSE LAB 2</td>
<td>--</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credits 20

III Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Comprehensive Viva-Voce</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Seminar – I</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Project Work Part - I</td>
<td>--</td>
<td>--</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credits 20

IV Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seminar – II</td>
<td>--</td>
<td>--</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Project Work Part - II</td>
<td>--</td>
<td>--</td>
<td>18</td>
</tr>
</tbody>
</table>

Total Credits 20
UNIT- I:

UNIT-II:

UNIT- III:
Dictionaries, ADT, The List ADT, Stack ADT, Queue ADT, Hash Table Representation, Hash Functions, Collision Resolution-Separate Chaining, Open Addressing-Linear Probing, Double Hashing.

UNIT- IV:

UNIT –V:

TEXT BOOKS:

2. Data Structures, Algorithms and Applications in java, 2/e, Sartaj Sahni, University Press.

REFERENCES BOOKS:
1. Data Structures And Algorithm Analysis, 2/e, Mark Allen Weiss, Pearson.

2. Data Structures And Algorithms, 3/e, Adam Drozdek, Cengage.

MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

UNIT- I:
Predicate calculus: Predicates, statement functions, variables and quantifiers, predicate formulas, free & bound variables, universe of discourse, inference theory of predicate calculus

UNIT- II :

UNIT- III:

UNIT- IV:

UNIT- V:
Graph Theory: Representation of Graph, Spanning Trees, BFS, DFS, Kruskals Algorithm, Binary trees, Planar Graphs, Graph Theory and Applications, Basic Concepts, Isomorphism and Sub graphs, Multi graphs and Euler circuits, Hamiltonian graphs, Chromatic Numbers
TEXT BOOKS:
1. Discrete Mathematical Structures with Applications to computer science J.P Tremblery, R.Manohar, TMH

REFERENCE TEXTBOOKS:
1. Elements of Discrete Mathematics, C L Liu, D P Mohanpatra, TMH
2. Discrete Mathematics, Schaum’s Outlines, Lipschutz, Lipson TMH.
UNIT- I:

UNIT- II:
Combinational and Sequential Circuits Decoders, Encoders, Multiplexers, Half and Full Adders, Shift Registers, Flip-Flops, Binary Counters, Memory Unit.

UNIT- III:
Memory Organisation Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory Concept.

UNIT- IV:
ALU Design Addition and Subtraction, Sign and Unsigned Numbers, Multiplication and Division Algorithms, BCD Adders.

UNIT- V:

TEXT BOOKS:
2. Micro Processor and Interfacing, 2/e, Douglas V.Hall, TMH.

REFERENCE BOOKS:
1. Digital Logic and Computer Organisation, Rajaraman, Radha Krishnan, PHI.
2. Micro Computer Systems: 8086/8088 family, 2/e, Liu, Gibson, PHI.
DATABASE MANAGEMENT SYSTEMS

UNIT- I:

UNIT- II :

UNIT- III :

UNIT- IV:
Overview of Transaction Management: The ACID Properties, Transactions and Schedules, Concurrent Execution of Transactions – Lock Based Concurrency Control, Deadlocks – Performance of Locking – Transaction Support in SQL. Concurrency Control: Serializability, and recoverability – Introduction to Lock Management – Lock Conversions, Dealing with Dead Locks, Specialized Locking Techniques – Concurrency Control without Locking. Crash recovery: Introduction to Crash recovery, Introduction to ARIES, the Log , Other Recovery related Structures, the Write-Ahead Log Protocol, Check pointing, recovering from a System Crash, Media recovery
UNIT-V:

TEXT BOOKS:

REFERENCE BOOKS:
1. Database Management System Oracle SQL and PL/SQL,P.K.Das Gupta, PHI.
ADVANCED OPERATING SYSTEMS

UNIT - I:

UNIT - II:
Distributed Deadlock Detection - Introduction - deadlock handling strategies in distributed systems - issues in deadlock detection and resolution - control organizations for distributed deadlock detection - centralized and distributed deadlock detection algorithms - hierarchical deadlock detection algorithms. Agreement protocols - introduction - the system model, a classification of agreement problems, solutions to the Byzantine agreement problem, applications of agreement algorithms. Distributed resource management: introduction - architecture - mechanism for building distributed file systems - design issues - log structured file systems.

UNIT - III:

UNIT - IV:
Protection and security - preliminaries, the access matrix model and its implementations - safety in matrix model - advanced models of protection. Data security - cryptography: Model of cryptography, conventional cryptography - modern cryptography, private key cryptography, data encryption standard - public key cryptography - multiple encryption - authentication in distributed systems.

UNIT - V:
Multiprocessor operating systems - basic multiprocessor system architectures - interconnection networks for multiprocessor systems - caching - hypercube architecture. Multiprocessor Operating System - structures of multiprocessor operating system, operating system design issues - threads - process synchronization and scheduling. Database Operating systems: Introduction - requirements of a database operating system Concurrency control: theoretical aspects - introduction, database systems - a concurrency control model of database systems - the problem of concurrency control - serializability theory - distributed database systems, concurrency control algorithms - introduction, basic synchronization primitives, lock based algorithms - timestamp based algorithms, optimistic algorithms - concurrency control algorithms, data replication.
TEXT BOOKS:

1. Mukesh Singhal, Niranjan G.Shivaratri, "Advanced concepts in operating systems: Distributed, Database and multiprocessor operating systems", TMH, 2001

REFERENCE Books:

1. Andrew S.Tanenbaum, "Modern operating system", PHI, 2003
3. Andrew S.Tanenbaum, "Distributed operating system", Pearson education, 2003
UNIT 1: DATA WAREHOUSING:

UNIT II: BUSINESS ANALYSIS:

UNIT III: DATA MINING:

UNIT IV: ASSOCIATION RULE MINING AND CLASSIFICATION:
Mining Frequent Patterns, Associations and Correlations – Mining Methods – Mining various Kinds of Association Rules – Correlation Analysis – Constraint Based Association Mining – Classification and Prediction – Basic Concepts – Decision Tree Induction – Bayesian Classification – Rule Based Classification – Classification by Back propagation – Support Vector Machines – Associative Classification – Lazy Learners – Other Classification Methods – Prediction.

UNIT V: CLUSTERING AND TRENDS IN DATA MINING:

TEXT BOOKS:
REFERENCES:
CS LAB 1

Data Structures Programs:
1. To implement Stacks & Queues using Arrays & Linked Lists
2. To implement Stack ADT, Queue ADT using arrays & Linked Lists
3. To implement Dequeue using Double Linked List & Arrays
4. To perform various Recursive & Non-recursive operations on Binary Search Tree
5. To implement BFS & DFS for a graph
6. To implement Merge & Heap sort of given elements
7. To perform various operations on AVL trees
8. To implement Krushkal’s algorithm to generate a min-cost spanning tree
9. To implement Prim’s algorithm to generate min-cost spanning tree
10. To implement functions of Dictionary using Hashing

Operating system programs:
1. Program to implement FCFS(First Come First Serve)scheduling Algorithms
2. Program to implement SJF(Shortest Job First)Scheduling Algorithm
3. Program to implement Priority Scheduling algorithm
4. Program to implement Round Robin Scheduling algorithm
5. Program to implement FIFO(First In First Out) Page Replacement Algorithm
6. Program to implement LRU(least Recently used) Page Replacement Algorithm
7. Program to implement LFU(Least Frequently used) Page Replacement Algorithm
8. Write a program to implement how Disk Scheduling is done in operating system
9. Draw the appropriate C.P.U performance graphs for SJF Scheduling Algorithm

Operating system programs:
10. Program to implement FCFS(First Come First Serve)scheduling Algorithms
11. Program to implement SJF(Shortest Job First)Scheduling Algorithm
12. Program to implement Priority Scheduling algorithm
13. Program to implement Round Robin Scheduling algorithm
14. Program to implement FIFO(First In First Out) Page Replacement Algorithm
15. Program to implement LRU(least Recently used) Page Replacement Algorithm
16. Program to implement LFU(Least Frequently used) Page Replacement Algorithm
17. Write a program to implement how Disk Scheduling is done in operating system
18. Draw the appropriate C.P.U performance graphs for SJF Scheduling Algorithm
UNIT I:
Introduction:
Security Attacks (Interruption, Interception, Modification and Fabrication), Security Services (Confidentiality, Authentication, Integrity, Non-repudiation, access Control and Availability) and Mechanisms, A model for Internetwork security, Internet Standards and RFCs, Buffer overflow & format string vulnerabilities, TCP session hijacking, ARP attacks, route table modification, UDP hijacking, and man-in-the-middle attacks.

UNIT II:
Conventional Encryption:
Conventional Encryption Principles, Conventional encryption algorithms, cipher block modes of operation, location of encryption devices, key distribution Approaches of Message Authentication, Secure Hash Functions and HMAC

UNIT III:
Number Theory: Prime and Relatively Prime Numbers, Modular Arithmetic, Fermat’s and Euler’s Theorems, The Chinese Remainder theorem, Discrete logarithms
Public key: Public key cryptography principles, public key cryptography algorithms, digital signatures, digital Certificates, Certificate Authority and key management Kerberos, X.509 Directory Authentication Service

UNIT IV:
Transport Level Security: Web Security Requirements, Secure Socket Layer (SSL) and Transport Layer Security (TLS), Secure Electronic Transaction (SET)
Email Privacy: Pretty Good Privacy (PGP) and S/MIME.

UNIT V:
Intrusion Detection: Intruders, Intrusion Detection systems, Password Management.
Malicious Software: Viruses and related threats & Countermeasures.
Fire walls: Firewall Design principles, Trusted Systems.

TEXT BOOKS:
2. Hack Proofing your Network, Russell, Kaminsky, Forest Puppy, Wiley Dreamtech

REFERENCE BOOKS:
COMPUTER NETWORKS

UNIT – I:

UNIT – II:
Data Link Layer Design Issues, Error Detection and Correction, Elementary Data Link Protocols, Sliding Window Protocols

UNIT – III:

UNIT – IV:

UNIT – V:
TEXT BOOKS:

REFERENCE BOOKS:
BIG DATA ANALYTICS

UNIT-I
Data structures in Java: Linked List, Stacks, Queues, Sets, Maps; Generics: Generic classes and Type parameters, Implementing Generic Types, Generic Methods, Wrapper Classes, Concept of Serialization

UNIT-II

UNIT-III
Writing MapReduce Programs: A Weather Dataset, Understanding Hadoop API for MapReduce Framework (Old and New), Basic programs of Hadoop MapReduce: Driver code, Mapper code, Reducer code, Record Reader, Combiner, Partitioner

UNIT-IV
Hadoop I/O: The Writable Interface, Writable Comparable and comparators, Writable Classes: Writable wrappers for Java primitives, Text, Bytes Writable, Null Writable, Object Writable and Generic Writable, Writable collections, Implementing a Custom Writable: Implementing a Raw Comparator for speed, Custom comparators

UNIT-V
Pig: Hadoop Programming Made Easier
Admiring the Pig Architecture, Going with the Pig Latin Application Flow, Working through the ABCs of Pig Latin, Evaluating Local and Distributed Modes of Running Pig Scripts, Checking out the Pig Script Interfaces, Scripting with Pig Latin
Applying Structure to Hadoop Data with Hive:
Saying Hello to Hive, Seeing How the Hive is Put Together, Getting Started with Apache Hive, Examining the Hive Clients, Working with Hive Data Types, Creating and Managing Databases and Tables, Seeing How the Hive Data Manipulation Language Works, Querying and Analyzing Data
TEXT BOOKS:
3. Hadoop in Action by Chuck Lam, MANNING Publ.
4. Hadoop for Dummies by Dirk deRoos, Paul C.Zikopoulos, Roman B.Melnyk,Bruce Brown, Rafael Coss

REFERENCE BOOKS:
1. Hadoop in Practice by Alex Holmes, MANNING Publ.
2. Hadoop MapReduce Cookbook, Srinath Perera, Thilina Gunarathne

SOFTWARE LINKS:
2. Hive: https://cwiki.apache.org/confluence/display/Hive/Home
3. Piglatin: http://pig.apache.org/docs/r0.7.0/tutorial.html
ADVANCED UNIX PROGRAMMING

UNIT-I
Introduction to unix-Brief History-What is Unix-Unix Components-Using Unix-Commands in Unix-Some Basic Commands-Command Substitution-Giving Multiple Commands.

UNIT-II

UNIT-III

UNIT-IV
Filters-The Grep Family-Other Filters-The Stream Editor Sed-The AWK Pattern Scanning and processing Language-Good Files and Good Filters.

UNIT-V

TEXT BOOKS:
1. The Unix programming Environment by Brain W. Kernighan & Rob Pike, Pearson.
2. Introduction to Unix Shell Programming by M.G.Venkateshmurthy, Pearson.

REFERENCE BOOKS:
1. Unix and shell programmingby B.M. Harwani, OXFORD university press.
UNIT-I:

UNIT-II:
Software Design: Overview of the Design Process, How to Characterise of a Design?, Cohesion and Coupling, Layered Arrangement of Modules, Approaches to Software Design

UNIT – III:
User Interface Design: Characteristics of Good User Interface, Basic Concepts, Types of User Interfaces, Fundamentals of Component-based GUI Development, A User Interface Design Methodology.

UNIT – IV:

UNIT – V:
TEXT BOOKS:

REFERENCE BOOKS:
ARTIFICIAL INTELLIGENCE
(Elective – 1)

UNIT-I:
Introduction to artificial intelligence: Introduction, history, intelligent systems, foundations of AI, applications, tic-tac-tie game playing, development of ai languages, current trends in AI

UNIT-II:
Problem solving: state-space search and control strategies: Introduction, general problem solving, characteristics of problem, exhaustive searches, heuristic search techniques, iterative-deepening a*, constraint satisfaction
Problem reduction and game playing: Introduction, problem reduction, game playing, alpha-beta pruning, two-player perfect information games

UNIT-III:
Logic concepts: Introduction, propositional calculus, proportional logic, natural deduction system, axiomatic system, semantic tableau system in proportional logic, resolution refutation in proportional logic, predicate logic

UNIT-IV:
Knowledge representation: Introduction, approaches to knowledge representation, knowledge representation using semantic network, extended semantic networks for KR, knowledge representation using frames advanced knowledge representation techniques: Introduction, conceptual dependency theory, script structure, cyc theory, case grammars, semantic web

UNIT-V:
Expert system and applications: Introduction phases in building expert systems, expert system versus traditional systems, rule-based expert systems blackboard systems truth maintenance systems, application of expert systems, list of shells and tools

TEXT BOOKS:
1. Artificial Intelligence- Saroj Kaushik, CENGAGE Learning,
2. Artificial intelligence, A modern Approach, 2nd ed, Stuart Russel, Peter Norvig, PEA
3. Artificial Intelligence- Rich, Kevin Knight, Shiv Shankar B Nair, 3rd ed, TMH
4. Introduction to Artificial Intelligence, Patterson, PHI

REFERNCE BOOKS:
1. Artificial intelligence, structures and Strategies for Complex problem solving, -George F Lugar, 5th ed, PEA
2. Introduction to Artificial Intelligence, Ertel, Wolf Gang, Springer
COMPILER DESIGN
(Elective – 1)

UNIT – I
Lexical Analysis-: The role of lexical analysis buffing, specification of tokens. Recognitions of tokens the lexical analyzer generator lexical

UNIT –II
Syntax Analysis -: The Role of a parser, Context free Grammars Writing A grammar, top down passing bottom up parsing Introduction to Lr Parser.

UNIT –III

UNIT – IV
Intermediated Code: Generation Variants of Syntax trees 3 Address code, Types and Deceleration, Translation of Expressions, Type Checking. Canted Flow Back patching?

UNIT – V
Runtime Environments, Stack allocation of space, access to Non Local date on the stack Heap Management code generation – Issues in design of code generation the target Language Address in the target code Basic blocks and Flow graphs. A Simple Code generation.

TEXT BOOKS:
2. Compiler Design K.Muneeswaran, OXFORD

REFERENCE BOOKS:
1. Compiler Construction, Principles and practice, Kenneth C Louden, CENGAGE
2. Implementations of Compiler, A New approach to Compilers including the algebraic methods,Yunlingsu,SPRINGER
UNIT -I: The ingredients of machine learning, Tasks: the problems that can be solved with machine learning, Models: the output of machine learning, Features, the workhorses of machine learning. Binary classification and related tasks: Classification, Scoring and ranking, Class probability estimation

UNIT- II: Beyond binary classification: Handling more than two classes, Regression, Unsupervised and descriptive learning. Concept learning: The hypothesis space, Paths through the hypothesis space, Beyond conjunctive concepts

UNIT- III: Tree models: Decision trees, Ranking and probability estimation trees, Tree learning as variance reduction. Rule models: Learning ordered rule lists, Learning unordered rule sets, Descriptive rule learning, First-order rule learning

TEXT BOOKS:
2. Machine Learning, Tom M. Mitchell, MGH.

REFERENCE BOOKS:
1. Understanding Machine Learning: From Theory to Algorithms, Shai Shalev-Shwartz, Shai Ben-David, Cambridge.
UNIT I:
Introduction: Applications of Computer Graphics and Image Processing, Fundamentals on Pixel concepts, effect of Aliasing and Jaggles, Advantages of high resolution systems
DDA line algorithms: Bresenhams line and circle derivations and algorithms

UNIT II:
2-D Transformations:Translations, Scaling, rotation, reflection and shear transformations, Homogeneous coordinates, Composite Transformations- Reflection about an arbitrary line; Windowing and clipping, viewing transformations, Cohen- Sutherland clipping algorithm

UNIT III:
Color Images: Pixel brightness transformations, Local Preprocessing, image smoothing, Edge detectors, Robert Operators, Laplace, Prewitt, Sobel, Fri-chen, Canny Edge detection

UNIT IV:
Mathematical Morphology: Basic Mathematical Concepts, Binary dilation and Erosion, Opening and closing, Gray Scale dilation and erosion, Skeleton, Thinning , Thickening Ultimate erosion, Geodesic transformations, Morphology and reconstruction, Morphological Segmentation

UNIT V:
SEGMENTATION: Threshold detection methods, Optimal Thresholding, Edge based Segmentation-Edge image thresholding, Edge relaxation, Border tracing, Hough Transforms, Region based segmentation: Region Mergingm Region Splitting, Splitting and Merging, Watershed Segmentation.
Image Data Compression: Image data Properties, Discrete Image Transformations in data compression, Discrete Cosine and Wavelet Transforms, Types of DWT and merits; Predicative Compression methods, Hierarchical and Progressive Compression methods, Comparison of Compression methods, JPEG- MPEG Image Compression methods.

Text Books:
2. Image Processing, Analysis and Machine Vision, Millan Sonka, Vacon Halvoc, Roger Boyle, Cengage Learning, 3ed, (Unit III, Unit IV, Unit V and Unit VI)

References:
2. Digital Image Processing with MATLAB and LABVIEW, Vipul Singh, Elsevier
PARALLEL ALGORITHMS
(Elective – 2)

UNIT I: Introduction:
Computational demand in various application areas, advent of parallel processing, terminology-pipelining, Data parallelism and control parallelism-Amdahl’s law.

UNIT II: Scheduling:

UNIT III: Algorithms:

UNIT IV: Sorting:

UNIT V: Searching
Parallel algorithms for Graph searching, All Pairs shortest paths and minimum cost spanning tree. Parallelization aspects of combinatorial search algorithms with Focus on Branch and Bound Methods and Alpha-beta Search methods.

TEXT BOOKS:
1. Parallel computing theory and practice, Michel J.Quinn
CLOUD COMPUTING
(Elective -2)

UNIT I:
Introduction: Network centric computing, Network centric content, peer-to-peer systems, cloud computing delivery models and services, Ethical issues, Vulnerabilities, Major challenges for cloud computing
Parallel and Distributed Systems: Introduction, architecture, distributed systems, communication protocols, logical clocks, message delivery rules, concurrency, model concurrency with Petri Nets.

UNIT II:
Cloud Infrastructure: At Amazon, The Google Perspective, Microsoft Windows Azure, Open Source Software Platforms, Cloud storage diversity, Inter cloud, energy use and ecological impact, responsibility sharing, user experience, Software licensing
Cloud Computing: Applications and Paradigms: Challenges for cloud, existing cloud applications and new opportunities, architectural styles, workflows, The Zookeeper, The Map Reduce Program model, HPC on cloud, biological research

UNIT III:
Cloud Resource virtualization: Virtualization, layering and virtualization, virtual machine monitors, virtual machines, virtualization- full and para, performance and security isolation, hardware support for virtualization, Case Study: Xen, vBlades
Cloud Resource Management and Scheduling: Policies and Mechanisms, Applications of control theory to task scheduling, Stability of a two-level resource allocation architecture, feed back control based on dynamic thresholds, coordination, resource bundling, scheduling algorithms, fair queuing, start time fair queuing, cloud scheduling subject to deadlines, Scheduling Map Reduce applications, Resource management and dynamic application scaling

UNIT IV:
Storage Systems: Evolution of storage technology, storage models, file systems and database, distributed file systems, general parallel file systems. Google file system., Apache Hadoop, Big Table, Megastore (text book 1), Amazon Simple Storage Service(S3) (Text book 2)
Cloud Security: Cloud security risks, security – atop concern for cloud users, privacy and privacy impact assessment, trust, OS security, Virtual machine security, Security risks

UNIT V:
Cloud Application Development: Amazon Web Services : EC2 – instances, connecting clients, security rules, launching, usage of S3 in Java, Installing Simple Notification Service on Ubuntu 10.04, Installing Hadoop on Eclipse, Cloud based simulation of a Distributed trust algorithm, Cloud service for adaptive data streaming (Text Book 1)
Google: Google App Engine, Google Web Toolkit (Text Book 2)
Micro Soft: Azure Services Platform, Windows live, Exchange Online, Share Point Services, Microsoft Dynamics CRM (Text Book 2)
TEXT BOOKS:
1. Cloud Computing, Theory and Practice, Dan C Marinescu, MK Elsevier

REFERENCE BOOK:
MOBILE COMPUTING
(Elective -2)

UNIT- I
Introduction: Mobile Communications, Mobile Computing – Paradigm, Promises/Novel Applications and Impediments and Architecture; Mobile and Handheld Devices, Limitations of Mobile and Handheld Devices.
GSM – Services, System Architecture, Radio Interfaces, Protocols, Localization, Calling, Handover, Security, New Data Services, GPRS.

UNIT –II
(Wireless) Medium Access Control (MAC): Motivation for a specialized MAC (Hidden and exposed terminals, Near and far terminals), SDMA, FDMA, TDMA, CDMA, Wireless LAN/(IEEE 802.11)

UNIT –III
Mobile Network Layer: IP and Mobile IP Network Layers, Packet Delivery and Handover Management, Location Management, Registration, Tunneling and Encapsulation, Route Optimization, DHCP.

UNIT –IV

UNIT- V

Mobile Ad hoc Networks (MANETs) : Introduction, Applications & Challenges of a MANET, Routing, Classification of Routing Algorithms, Algorithms such as DSR, AODV, DSDV, etc., Mobile Agents, Service Discovery.

TEXT BOOKS:

REFERENCE BOOKS:
1. a) Study of Unix/Linux general purpose utility command list
 man,who,cat, cd, cp, ps, ls, mv, rm, mkdir, rmdir, echo, more, date, time, kill, history,
 chmod, chown, finger, pwd, cal, logout, shutdown.
 b) Study of vi editor.
 c) Study of Bash shell, Bourne shell and C shell in Unix/Linux operating system.
 d) Study of Unix/Linux file system (tree structure).
 e) Study of .bashrc, /etc/bashrc and Environment variables.

2. Write a C program that makes a copy of a file using standard I/O, and system calls

3. Write a C program to emulate the UNIX ls –l command.

4. Write a C program that illustrates how to execute two commands concurrently
 with a command pipe.
 Ex: - ls –l | sort

5. Write a C program that illustrates two processes communicating using shared memory

6. Write a C program to simulate producer and consumer problem using semaphores

7. Write C program to create a thread using pthreads library and let it run its function.

8. Write a C program to illustrate concurrent execution of threads using pthreads library.

Understanding and using of commands like ifconfig, netstat, ping, arp, telnet, ftp, finger,
traceroute, whois etc. Usage of elementary socket system calls (socket (), bind(), listen(),
accept(),connect(),send(),recv(),sendto(),recvfrom()).

10. Implementation of Connectionless Iterative time service (UDP).

11. Implementation of Select system call.
12. Implementation of gessockopt(), setsockopt() system calls.

13. Implementation of getpeername() system call.